Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 164: 4516-4531, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32941911

RESUMO

Recombinant antibodies fragments in several new formats are routinely investigated and used in diagnostic and therapeutic applications as anti-cancers molecules. New antibody formats are generated to compensate the need for multispecificity and site-specific introduction of fluorescent dyes, cytotoxic payloads or for generating semisynthetic multimeric molecules. Fabs of trastuzumab bearing transglutaminase (MTG) reactive sites were generated by periplasmic expression in E. coli and purified. Multimeric Fabs were generated by either disulfide bridge formation or by using MTG-sensitive peptide linkers. Binding to receptor was assessed by ELISA and SPR methods. Internalization and growth inhibition assays were performed on BT-474 and SKBR3 Her2+ cells. Fabs were successfully produced and dimerized or trimerized using MTG and suitably designed peptide linkers. Site-specific derivatizations with fluorophores were similarly achieved. The monomeric, dimeric and trimeric variants bind the receptor with affinities similar or superior to the full antibody. Fab and Fab2 are rapidly internalized in Her2+ cells and exhibit growth inhibition abilities similar to the full antibody. Altogether, the data show that the recombinant Fabs can be produced in E. coli and converted into multimeric variants by MTG-based bioconjugation. Similar approaches are extendable to the introduction of cytotoxic payloads for the generation of novel Antibody Drug Conjugates.


Assuntos
Imunoconjugados/química , Fragmentos Fab das Imunoglobulinas/química , Transglutaminases/imunologia , Trastuzumab/química , Sequência de Aminoácidos , Neoplasias da Mama/patologia , Carcinoma/patologia , Linhagem Celular Tumoral , Cistina/química , DNA Complementar/genética , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli , Feminino , Corantes Fluorescentes , Humanos , Imunoconjugados/imunologia , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Modelos Moleculares , Fragmentos de Peptídeos/síntese química , Conformação Proteica , Engenharia de Proteínas , Multimerização Proteica , Receptor ErbB-2/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Ressonância de Plasmônio de Superfície , Trastuzumab/imunologia
2.
Int J Mol Sci ; 17(4): 491, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27043557

RESUMO

PEGylation of biomolecules is a major approach to increase blood stream half-life, stability and solubility of biotherapeutics and to reduce their immunogenicity, aggregation potential and unspecific interactions with other proteins and tissues. Antibodies have generally long half-lives due to high molecular mass and stability toward proteases, however their size lowers to some extent their potential because of a reduced ability to penetrate tissues, especially those of tumor origin. Fab or otherwise engineered smaller fragments are an alternative but are less stable and are much less well retained in circulation. We have here investigated the effects of various PEGylations on the binding properties and in vivo half-life of Fab fragments derived from the enzymatic splitting of Trastuzumab. We find that PEGylation increases the half-life of the molecules but also strongly affects the ability to recognize the target antigen in a way that is dependent on the extent and position of the chemical modification. Data thus support the concept that polyethylene glycol (PEG) conjugation on Trastuzumab Fabs increases half-life but reduces their affinity and this is a fine balance, which must be carefully considered for the design of strategies based on the use of antibody fragments.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Receptor ErbB-2/imunologia , Trastuzumab/química , Trastuzumab/farmacologia , Animais , Afinidade de Anticorpos , Antineoplásicos/sangue , Antineoplásicos/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/sangue , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Masculino , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Ratos Sprague-Dawley , Trastuzumab/sangue , Trastuzumab/imunologia
3.
BMC Biotechnol ; 15: 84, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26369939

RESUMO

BACKGROUND: Bacterial transglutaminases are increasingly required as industrial reagents for in vitro modification of proteins in different fields such as in food processing as well as for enzymatic site-specific covalent conjugation of therapeutic proteins to polyethylene glycol to get derivatives with improved clinical performances. In this work we studied the production in Escherichia coli of a recombinant transglutaminase from Streptomyces mobaraensis (microbial transglutaminase or MTGase) as enzymatically active chimeric forms using different expression systems under the control of both lac promoter or thermoinducible phage lambda promoter. RESULTS: Thermoinducible and constitutive expression vectors were constructed expressing Met-MTGase with chimeric LacZ1-8PNP1-20 or LacZ1-8 fusion protein under different promoters. After transformed in competent Escherichia coli K12 strains were fermented in batch and fed-bach mode in different mediums in order to select the best conditions of expression. The two most performing fusion protein systems namely short thermoinducible LacZ1-8Met-MTGase from NP668/1 and long constitutive LacZ1-8PNP1-20Met-MTGase from NP650/1 has been chosen to compare both efficiency of expression and biochemical qualities of the product. Proteins were extracted, purified to homogeneity and verified as a single peak obtained in RP-HPLC. The LacZ1-8PNP1-20Met-MTGase fusion protein purified from NP650/1 exhibited an activity of 15 U/mg compared to 24 U/mg for the shorter fusion protein purified from NP668/1 cell strain. CONCLUSIONS: Combining the experimental data on expression levels and specific activities of purified MTGase fusion proteins, the chimeric LacZ1-8Met-MTGase, which displays an enzymatic activity comparable to the wild-type enzyme, was selected as a candidate for producing microbial transglutaminase for industrial applications.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/metabolismo , Transglutaminases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Escherichia coli/metabolismo , Fermentação , Plasmídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Streptomyces/enzimologia , Streptomyces/genética , Transglutaminases/química , Transglutaminases/genética , Transglutaminases/isolamento & purificação
4.
PLoS One ; 7(8): e42511, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905140

RESUMO

The limited stability of proteins in vitro and in vivo reduces their conversion into effective biopharmaceuticals. To overcome this problem several strategies can be exploited, as the conjugation of the protein of interest with polyethylene glycol, in most cases, improves its stability and pharmacokinetics. In this work, we report a biophysical characterization of the non-pegylated and of two different site-specific mono-pegylated forms of recombinant human methionyl-granulocyte colony stimulating factor (Met-G-CSF), a protein used in chemotherapy and bone marrow transplantation. In particular, we found that the two mono-pegylations of Met-G-CSF at the N-terminal methionine and at glutamine 135 increase the protein thermal stability, reduce the aggregation propensity, preventing also protein precipitation, as revealed by circular dichroism (CD), Fourier transform infrared (FTIR), intrinsic fluorescence spectroscopies and dynamic light scattering (DLS). Interestingly, the two pegylation strategies were found to drastically reduce the polydispersity of Met-G-CSF, when incubated under conditions favouring protein aggregation, as indicated by DLS measurements. Our in vitro results are in agreement with preclinical studies, underlining that preliminary biophysical analyses, performed in the early stages of the development of new biopharmaceutical variants, might offer a useful tool for the identification of protein variants with improved therapeutic values.


Assuntos
Biofísica/métodos , Fator Estimulador de Colônias de Granulócitos/química , Metionina/química , Dicroísmo Circular , Humanos , Luz , Modelos Estatísticos , Conformação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Espalhamento de Radiação , Espectrometria de Fluorescência/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Temperatura
5.
J Control Release ; 164(3): 355-63, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22735238

RESUMO

We describe the preparation and characterization of a new monoPEGylated derivate of a recombinant form of filgrastim (methionyl human granulocite colony stimulating factor, rh-Met-G-CSF), BK0026, prepared by enzymatic site-specific 20kDa PEG conjugation to glutamine 135 residue by microbial transglutaminase catalyzed reaction. BK0026 was purified to a clinical grade by a single cation exchange chromatography step and characterized by using a panel of physicochemical analyses. NH(2)-terminal sequence and peptide mapping demonstrated no differences between the primary structure of BK0026 and the non-PEGylated filgrastim. The circular dichroism and fluorescence spectroscopy showed the preservation of high order protein structure. The single conjugation site on glutamine 135 was identified by endoproteinase Glu-C peptide mapping combined with mass spectrometry analysis and NH(2)-terminal sequence of the PEGylated peptides. BK0026 purity as well as product- and process-related contaminants was determined by several analytical methods, which showed that BK0026 is stable for more than 2 years when stored at 4-8°C. The advantages of enzymatic PEGylation of filgrastim are the absolute specificity of glutamine 135 conjugation combined with high PEGylation yields under very mild reaction conditions. The new site specific monoPEGylated filgrastim is a promising candidate for preclinical and clinical studies aimed at developing a long-lasting treatment of neutropenia in oncological patients under chemotherapy treatments.


Assuntos
Portadores de Fármacos/química , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/química , Polietilenoglicóis/química , Tecnologia Farmacêutica/métodos , Transglutaminases/química , Sequência de Aminoácidos , Animais , Catálise , Linhagem Celular Tumoral , Fenômenos Químicos , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Filgrastim , Glutamina/química , Fator Estimulador de Colônias de Granulócitos/farmacocinética , Masculino , Camundongos , Dados de Sequência Molecular , Mapeamento de Peptídeos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray , Streptomyces/enzimologia
6.
Results Pharma Sci ; 2: 58-65, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-25755995

RESUMO

Human glucagon-like peptide-1 (GLP-1) is a physiological gastrointestinal peptide with glucose-dependent insulinotropic effects which is therefore considered an interesting antidiabetic agent. However, after in vivo administration, exogenous GLP-1 does not exert its physiological action due to the combination of rapid proteolytic degradation by ubiquitous dipeptidyldipeptidase IV (DPP IV) enzyme and renal clearance resulting in an extremely short circulating half-life. In this work we describe the conjugation of GLP-1-(7-36)-amide derivatives with polyethylene glycol (PEG) by enzymatic site-specific transglutamination reaction as an approach to reduce both the proteolysis and the renal clearance rates. The compound GLP-1-(7-36)-amide-Q(23)-PEG 20 kDa monopegylated on the single glutamine residue naturally present in position 23 maintained the ability to activate the GLP-1 receptor expressed in the rat ß-cell line RIN-m5F with nanomolar potency along with an increased in vitro resistance to DDP IV and a circulating half-life of about 12 h after subcutaneous administration in rats. These properties enabled GLP-(7-36)-amide-Q(23)-PEG 20 kDa to exert a glucose-stabilizing effect for a period as long as 8 h, as demonstrated by a single subcutaneous injection to diabetic mice concomitantly challenged with an oral glucose load. The results reported in this work indicate that GLP-(7-36)-amide-Q(23)-PEG 20 kDa could be a lead compound for the development of long-lasting anti-diabetic agents useful in the treatment of type 2 diabetes affected patients.

7.
Bioconjug Chem ; 19(12): 2427-31, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19053302

RESUMO

A new PEGylating agent, PEG-betaAla-NHCO-OSu, has been studied for protein amino conjugation using human growth hormone (hGH) and granulocyte colony stimulating factor (G-CSF) as model therapeutic proteins. This new activated PEG possesses a convenient property for protein modification when compared to other activated carboxylate PEGs, namely, lower reactivity. When this polymer reacts with a protein, its features lead to fewer PEG-protein conjugate isomers because it preferentially binds the most nucleophilic and exposed amines. Furthermore, the conjugates obtained with PEG-betaAla-NHCO-OSu showed an interesting slow release of polymer chains upon incubation under physiological conditions. Further investigations determined that the PEG chains released are those coupled to histidine residues, and this finally yields less PEGylated species as well as free protein. This release allows a partial recovery of protein activity that is often remarkably and permanently reduced after stable PEGylation, and it occurs in water or blood without the involvement of enzymes. On the other hand, the rate of PEG release, tuned by the chemical structure of this new PEGylating agent, is not too high, and therefore, the achievement of a desired prolongation of protein half-life in vivo is still feasible. The pharmacokinetics of hGH-PEG6k-betaAla conjugate was compared to that of native hGH in rats and monkeys, and the blood residence times were increased by 10- and 7-fold, respectively. The conjugate potency was evaluated in hypophysectomized rats demonstrating a superior pharmacodynamic profile with respect to native hGH.


Assuntos
Fator Estimulador de Colônias de Granulócitos/química , Fator Estimulador de Colônias de Granulócitos/farmacocinética , Hormônio do Crescimento Humano/química , Hormônio do Crescimento Humano/farmacocinética , Polietilenoglicóis/química , Succinimidas/química , Sequência de Aminoácidos , Animais , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/farmacologia , Meia-Vida , Hormônio do Crescimento Humano/administração & dosagem , Hormônio do Crescimento Humano/farmacologia , Humanos , Injeções Subcutâneas , Macaca mulatta , Masculino , Polietilenoglicóis/síntese química , Ratos , Succinimidas/síntese química , Fatores de Tempo , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...